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Abstract

General equilibrium models have been used for decades to obtain insights into the economic impli-
cations of policies and decisions. Despite successes, however, these economic models have substantive
limitations. Many of these limitations are due to computational and methodological constraints that
can be overcome by leveraging recent advances in computer architecture, numerical methods, and eco-
nomics research. Motivated by these considerations, we are developing a new modeling framework: the
Community Integrated Model of Economic and Resource Trajectories for Humankind (CIM-EARTH). In
this paper, we describe our framework and initial implementation and its application to a case study on
carbon leakage, the impact of a unilateral carbon emissions policy on the global movement of industrial
production capacity away from that region.

1 Introduction

Computable general equilibrium (CGE) models (Johansen, 1960; Robinson, 1991; Sue Wing, 2004) and their
stochastic counterparts, dynamic stochastic general equilibrium models (del Negro and Schorfheide, 2003),
form the backbone of policy analysis programs around the world and have been used for decades to obtain
insights into the economic implications of policies (Bhattacharyya, 1996; Shoven and Whalley, 1984; de Melo,
1988). Hundreds of such models have been built (Devarajan and Robinson, 2002; Conrad, 2001) and used
to explore such policy-relevant questions as the impact of new tax policies or increased fossil energy costs
on consumers. These models also form a core component when studying the interaction between economic
activity and the Earth system within integrated assessment models (Dowlatabadi and Morgan, 1993; Weyant,
2009).

Despite successes, however, these economic models have substantive limitations (Scrieciu, 2007). Models
may not incorporate the industrial or process detail required to answer questions of interest; costs estimates
from different models often differ considerably (Vuuren et al., 2009; Weyant, 1999, 2006; Friedlingstein
et al., 2006; Lee, 2006); and little quantification of the uncertainty inherent in estimates is performed.
Many limitations of current economic models are due to computational and methodological constraints
that can be overcome by leveraging recent advances in computer architecture, numerical methods, and
economics research. For example, contemporary models use mathematical formulations, numerical methods,
and computer systems that restrict the size of the models that can be solved in a reasonable time, so that it is
impractical to add detail such as increased industrial, geographic, or temporal resolution; capital and product
vintages (Benhabib and Rustichini, 1991; Cadiou et al., 2003; Salo and Tahvonen, 2003); or overlapping
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generations (Auerbach and Kotlikoff, 1987). Understanding the distributional impacts of a carbon emission
policy (Fullerton, 2009; Fullerton and Rogers, 1993), for example, requires one to represent the industries,
regions, and overlapping generations for each income group that may be affected. Moreover, the interactions
between policies that vary by region adds another level of complexity. More modern formulations and solvers
and more powerful computer systems offer the potential to solve systems of equations that are several orders
of magnitudes larger. Thus, we can in principle create models that encompass more of these details of
importance to decision makers and characterize important aspects of uncertainty.

Motivated by these considerations, we are developing a new modeling framework: the Community Inte-
grated Model of Economic and Resource Trajectories for Humankind (CIM-EARTH). Our goal is to facilitate
and encourage the creation, execution, and testing of new economic models with significantly greater fidelity
and sophistication than is the norm today. We envision the framework as combining (a) high-level pro-
gramming that permits the convenient formulation of a wide range of models, (b) a flexible implementation
that permits the efficient solution of these models using the most advanced numerical methods and high-
performance computer systems, and (c) a suite of associated tools for parameter estimation and model
evaluation.

We seek not only to provide access to better economic formulations and numerical methods but also to
encourage the development and use of open models. Transparent policy studies, for example, require that
software and data be accessible and understandable. If, in addition, we design software to be modifiable and
extensible, then we also facilitate the reuse of methodologies and tools: a model produced by one researcher
can be tested by others with different data and compared with other models and extended in new directions.
In this way, the barriers to entry for newcomers to a research field can be reduced, and thus the diversity
and quality of the ideas explored can increase. Therefore, we distribute our framework under an open-source
license that permits others to read the software, modify it, and redistribute the modifications.

In this paper, we describe our framework and initial implementation and its application to a case study
on carbon leakage, the impact of a unilateral carbon emissions policy on the global movement of industrial
production capacity away from that region. Section 2 discusses our framework and its features, the foundation
upon which our models are built. Section 3 details the model used for this case study. Section 4 presents
results and the sensitivity of those results to the baseline assumptions. Scalar versions of the models used
in the case studies are available from www.cim-earth.org.

2 CIM-EARTH Framework

To develop an accessible, understandable, modifiable, and extensible framework, our overall architecture uses
a modular design; proven numerical libraries such as PATH (Dirkse and Ferris, 1995; Ferris and Munson,
1999, 2000), TAO (Benson et al., 2010), and PETSc (Balay et al., 1997); and a high-level specification
language. In this section, we discuss the relevant parts of the CIM-EARTH framework for specifying and
solving CGE models.

CGE models determine prices and quantities over time for commodities such that supply equals demand
for each good (Ballard et al., 1985; Ginsburgh and Keyzer, 1997; Scarf and Shoven, 1984). Such models
feature the following:

• Many industries that hire labor, rent capital, and buy inputs to produce outputs. Each industry
chooses a feasible production schedule to maximize its profit.

• Many consumers that choose what to buy and how much to work subject to the constraint that
purchases cannot exceed income. Each consumer chooses a feasible consumption schedule to maximize
his utility function.

• Many markets where producers and consumers trade that set wage rates and commodity prices to clear
the markets. If the price of a commodity is positive, then supply must equal demand.

Model instances are specified by defining the type of model (deterministic or stochastic, myopic or for-
ward looking); the size of the model (regions, industries, consumers, and time periods); the details for the
industries and consumers (production and utility functions and their nested structure), their parametriza-
tion (elasticities of substitution), and calibration data (expenditures and tax data for the base year); the
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dynamic trajectories (land and labor endowments and capital accumulation); and the coupling with other
system components.

The initial version of the CIM-EARTH framework has been implemented in the AMPL modeling language
(Fourer et al., 2003). This language is convenient for expressing large optimization and complementarity
problems using sets and algebraic constraints, provides access to a variety of commercial and academic
numerical methods, and automatically computes the derivative information required by these methods to
calculate a solution. We are currently developing a next-generation system that uses a domain-specific
language to simplify model specification and target large parallel computers when solving them.

The primary challenge in developing such models is estimating the production and utility functions that
characterize the physical and economic processes constraining the supply and demand decisions of industries
and consumers. For our CGE models, we use nested constant elasticity of substitution (CES) production
and utility functions in calibrated share form (Boehringer et al., 2003),

y =

(∑
i

θi (γixi)
σ−1
σ

) σ
σ−1

,

where y is the ratio between the output of the industry to a base year value, xi are the ratios of the input
commodities to their base year values, γi are efficiency parameters that determine how effectively these
factors can be used, θi are the share parameters with θi > 0 and

∑
i θi = 1, and σ controls the degree to

which the inputs can be substituted for one another. Our framework generates the special cases of Leontief
(σ = 0) and Cobb-Douglas (σ = 1) functions automatically when used.

The nesting structure can be depicted graphically by a tree, with each node representing a production
function with its own elasticity of substitution that aggregates the inputs from below into a commodity
bundle. The root node represents the total output from the production process. Figure 1 show a simple
case. In the CIM-EARTH framework, we add intermediate variables for the internal nodes, encode the
individual functions by specifying the inputs and output, and reconstruct the tree from this information.
Since the nesting structure is typically the same for each producer independent of the region in which they
reside, we provide facilities to convey this information and reduce the amount of required coding.

Tables are used to convey the parametrization and calibration data. This data includes expenditures on
inputs and tax information. The share parameters are automatically computed given the nesting structure
of the production functions and the expenditure data for the base year. Also included is support for ad
valorem and excise taxes, import and export duties, and endogenous tax rates, such as those encountered in
cap-and-trade policies.

Once the problem structure and data are provided, we enter a processing phase to check consistency
and make any necessary modifications. Consistency checks include testing the nesting structure to ensure
it is a tree. Modifications are made to the tree structure, for example, to eliminate inputs that have zero
expenditures or minuscule shares. The modifications are applied iteratively so that when all the leaves of
a particular node are eliminated, that node is also eliminated. Such modifications are necessary to ensure
that the nesting structure and provided data match.

After processing is complete, we have a set of constrained optimization problems for the producers and
consumers and market clearing conditions. Because the optimization problems solved by the industries
and consumers are convex in their own variables and satisfy a constraint qualification, we can replace each
with an equivalent complementarity problem obtained from the first-order optimality conditions by adding
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Table 1: Regions, industries, and factors for the CGE model used in the carbon leakage study. The industries are
labeled by their production function structure: (A) agriculture, (E) extraction of fossil fuels, (M) manufacturing, (N)
electricity generation, (P) petroleum refining, and (S) service industries.

Regions Industries Factors
Canada (CAN) Agriculture and Forestry (A) Capital
Mexico (MEX) Coal Extraction (E) Labor
United States (USA) Gas Extraction (E) Land
Brazil (BRA) Oil Extraction (E) Natural Resources
Rest of Latin America (LAM) Cement (M)
Western Europe (WEU) Chemicals (M)
Rest of Europe (REU) Nonferrous Metals (M)
Middle East and North Africa (MNA) Steel and Iron (M)
Rest of Africa (AFR) Other Manufacturing (M)
China, Mongolia, and Koreas (CHK) Electricity (N)
India (IND) Petroleum Refining (P)
Japan (JAP) Air Transport (S)
Russia, Georgia, and Asiastan (RUS) Land Transport (S)
Rest of South Asia (SOA) Sea Transport (S)
Rest of Southeast Asia (SEA) Government Services (S)
Oceania (OCN) Other Services (S)

Lagrange multipliers on the constraints. These optimality conditions in combination with the market clearing
conditions form a square complementarity problem.

The simplest dynamic CGE models are myopic, in which the industries and consumers look only at their
current state and do not consider the future. In this case, after the processing step, we loop over time
and solve a complementarity problem for each time step with fixed trajectories for the factor endowments,
efficiency parameters, and emission factors. Summary reports are written to user-defined files once the
complementarity problem for each time step is solved.

The complementarity problem solved at each time step is automatically generated by the framework and
is emitted in a scalar form so that it can be inspected. The complementarity problem is solved by applying
a generalized Newton method, such as PATH (Dirkse and Ferris, 1995; Ferris and Munson, 1999, 2000).
PATH is a sophisticated implementation of a Josephy-Newton method that solves a linear complementarity
problem at each iteration using a variant of Lemke’s method to obtain a direction and then searches along
this direction to obtain sufficient decrease for the merit function.

3 Model Instance

We next provide a detailed discussion of the model instance implemented in the CIM-EARH framework used
for the carbon leakage study. In particular, we specify the structure of the production functions, the data
used to calibrate them, and the exogenous time-series forecasts of important economic drivers used to define
a set of baseline scenarios.

3.1 Structure

Table 1 shows the regions, industries, and factors of the model instance used for studying carbon leakage.
For each industry we indicate the structure of the production functions: (A) agriculture, (E) extraction of
fossil fuels, (M) manufacturing, (N) electricity generation, (P) petroleum refining, and (S) service industries.
This aggregation was chosen to contain more detailed resolution in the energy-intensive industries and in the
industries that provide transport services to importers to move goods around the world since these industries
would be most affected by a carbon tax or cap-and-trade program.
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Figure 2: Structure of the production functions for the model instance used in the carbon leakage study. Each node
represents a production function. Nodes with vertical line inputs use Leontief functions; the other nodes are labeled
with their elasticities of substitution. The elasticities of substitution between domestic and imported commodities
and the Armington international trade elasticities are given in Table 2.

The production functions in each region have the nested structure summarized in Figure 2 and are
loosely based on those used in the EPPA model (Babiker et al., 2001). As before, each node represents
a CES function aggregating the production factors below. The structure of the production functions for
the importers of each commodity in each region is also provided. The capital goods industries aggregate
materials using a single Leontief production function and do not demand fossil fuels, refined petroleum,
electricity, or production factors; these capital goods are demanded only by consumers. We use elasticities
of substitution taken from the CGE literature for the producers and consumers (Balistreri et al., 2003; Liu
et al., 2004; Webster et al., 2008; Sokolov et al., 2009). We use the GTAP database for the base-year revenues
and expenditures. In particular, the share parameters are calibrated with the GTAP v7 database of global
expenditure values for 2004 (Gopalakrishnan and Walmsley, 2008).

Trade among regions is handled through importers of each commodity in each region. Importers are
modeled like other producers using the nested CES production function shown in Figure 2. The elastic-
ities of substitution between domestic and imported commodities and the Armington international trade
elasticities used in the carbon leakage study are given in Table 2. We use a Leontief production function
to aggregate between the imported good and the relevant total transport margin so that the amount of
transport demanded scales with the amount of the good imported. We use three types of transportation:
land transportation, including freight by trucks and pipelines; air transportation; and sea transportation.
Since importers do not care about the origination of transport services, we model international transporta-
tion of each type as a homogeneous commodity having one global price. The homogeneous transportation
service industries simply aggregate air, land, and sea transportation services from each region into a single
commodity with a small elasticity of substitution, σ = 0.2. These homogeneous transportation services are
used only for international trade; domestic transportation services are included in the materials nest of the
other production functions.
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Table 2: Elasticity of substitution parameters between domestic and imported commodities and the Armington
international trade elasticities by industry for the CGE model used in the carbon leakage study. The industries are
labeled by their production function structure: (A) agriculture, (E) extraction of fossil fuels, (M) manufacturing, (N)
electricity generation, (P) petroleum refining, and (S) service industries.

Elasticity of Substitution
Industry Domestic/Import Armington

Agriculture and Forestry (A) 2.7 5.6
Coal Extraction (E) 3.0 6.1
Gas Extraction (E) 17.2 34.4
Oil Extraction (E) 5.2 10.4
Cement (M) 2.9 5.8
Chemicals (M) 3.3 6.6
Nonferrous Metals (M) 4.2 8.4
Steel and Iron (M) 3.0 5.9
Other Manufacturing (M) 3.4 7.2
Electricity (N) 2.8 5.6
Petroleum Refining (P) 2.1 4.2
Air Transport (S) 1.9 3.8
Land Transport (S) 1.9 3.8
Sea Transport (S) 1.9 3.8
Government Services (S) 1.9 3.8
Other Services (S) 1.9 3.8

This model does not contain a government consumer; it contains only a producer of government goods
and services, which include defense, social security, health care, and education. Industries and consumers
demand these government goods and services. The government producer is treated like any other producer
and is subject to ad valorem and excise taxes. All taxes collected by a region are returned to consumers in
that region.

Capital is specific to each region in the model instance. Within each region we use a perfectly fluid
model of capital with a 4% yearly depreciation rate. To spur investment in capital, we use the standard
practice in myopic CGE models in which investment contributes to consumer utility with the investment
amount calibrated to historical data. Investment enters the consumer utility function in a Cobb-Douglas nest
with the government services and consumption bundles, implying that a fixed share of consumer income in
each year goes to government services, investment, and consumption. In particular, the consumer buys the
output from an industry that produces capital goods. This industry demands material goods and services in
order to produce the capital good but does not demand capital, labor, or energy. The change in the capital
endowment in the next period relative to the amount in the base year is obtained from the dynamic equation

yK,t+1 = (1 − δ)yK,t +
x̄I,0
ȳK,0

xI,t,

where yK,t is the change in capital endowment, yK,0 = 1, xI,t is the change in investment, and δ is the
capital depreciation rate. The ratio of the base-year investment quantity x̄I,0 to the base-year capital stock
ȳK,0 is available from the GTAP data.

3.2 Ensemble of Baseline Scenarios

We construct an ensemble of time-series forecasts for important economic drivers such as labor productivity
and energy efficiency by extrapolation from historical data that are input into the model instance. By running
the model instance for each set of forecasts without making any policy changes, we obtain an ensemble of
baseline scenarios that can be compared to existing baseline scenarios from the literature. Moreover, by
exploring policy scenarios over the range of baseline scenarios, we can determine the robustness of a policy
to the assumptions used to produce the baseline scenario.
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Our approach is different from much of the carbon leakage literature that typically starts from a reference
baseline scenario, chooses a single set of time-series forecasts to replicate it, and then determines the change
in outcome for a variety of policy scenarios, often without discussion of the scientific underpinnings of the
baseline scenario or how it has been integrated into the model. While the trajectory of CO2 emissions, for
example, may match the EIA forecast, the parameters tuned to achieve this result and thus the business-
as-usual assumptions are not described. This lack of documentation makes it difficult to compare results to
the literature, since the results are reported relative to a single hypothetical baseline scenario for which the
assumptions are not defined.

We now detail the construction of our ensemble of baseline scenarios, which are parametrized by national
aggregate energy efficiency and labor productivity parameters. The space is reduced to two dimensions
by assuming perfect correlations for the energy efficiency and labor productivity across regions. We then
compare the results from our baseline scenarios to forecasts of emissions from the literature.

3.2.1 Fossil Extraction and Energy Efficiency

Crude fossil extraction, reserves, depletion, and backstops are important to understand how energy demand
is met. Based on a simple fossil resource depletion model, we forecast Gaussian extraction curves fit to
historical data for model regions independently, constrained to give future extraction equal to existing fossil
reserves. This model combines forecasts of new reserve discoveries with advancing extraction technologies
to predict the extraction curves. The remaining global conventional crude oil in our trajectory is about 1.6
trillion barrels (Tbbl), which is near the median of expert estimates in the standard literature. We have used
simple, symmetric curves for these fits, implying smooth fall-off of extraction rates as reserves are depleted.
The remaining global conventional gas in our trajectory is about 371 trillion m3, which is near the 2007 WEC
estimate of 386 trillion m3. Forecasts for coal depletion are more ambiguous, with high estimated resources
to proven reserves ratio and serious questions about what percentage will be technologically recoverable. The
sum of coal reserves we use in our trajectory is 1.4 trillion tons of extractable coal resource. The estimate
amounts to an assumption of only about 25% of the existing coal resources being ultimately recoverable,
which is at the low end of estimated recoverable resources.

We incorporate an energy efficiency parameter into the industry production functions to model the
efficiency by which energy is used. The inverse of regional industrial energy intensity is used as a proxy
for the energy efficiency of industry. Historical industry gross domestic product is obtained from the UN
database of national accounts, and historical industry energy use is obtained from the IEA World Energy
Balance database. This data is used to calculate the year-over-year rate of change in industrial energy
intensity. Rates for all regions in our model instance are available from 1972 to 2007. The data set is
then truncated to eliminate the two largest positive and negative year-over-year swings to eliminate strong
variations from one-time political events or economic crashes. The median baseline scenario then assumes
that the average rate of change in energy intensity after 2008 is a weighted geometric mean of the historical
rates.

The linear trend of the historical rate data advises the construction of the probability distribution for
use in constructing the ensemble of baseline scenarios. For regions with a negative slope, m, in the linear
trend, the distribution of the average rate of change in energy intensity for the forecast years is skewed
lower by a multiple of the slope, currently 5m. Positive slopes are treated similarly. The only exception
is for the “Rest of Europe” region. Rapid development in energy efficiency in recent years as a result of
technological improvements and economic shifts spurred by membership in the European Union implies rates
of energy efficiency improvement that would surpass the gross energy efficiency levels forecast for the more
developed parts of Europe, the United States, and Japan by 2030–2040. Since these efficiency levels seem
highly unlikely, the implied shift in the linear trend is ignored for this region.

3.2.2 Population Growth and Labor Productivity

The other economic drivers we consider are population growth and labor productivity, which are combined to
estimate the labor endowment in each region. We use gross population data from 1950 to 2008 with forecasts
to 2050 from the 2008 United Nations population database (United Nations) and historical economic activity
rates from 1980 to 2006 from the International Labor Organization (International Labor Organization, b)
with projections to 2020 to determine the economically active segment of the population.
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Labor productivity is chosen to match forecasts extrapolated from historical trends using data from the
International Labor Organization Database of Key Indicators of the Labor Market (International Labor
Organization, a). This database contains data for most countries spanning 1980 to 2005. For simplicity,
we currently base labor productivity on the index of gross domestic product per person employed, even
though productivity indices are available at sectoral resolution covering agriculture, forestry and fishing,
manufacturing, trade, and transportation and communication for many countries. Forecasts are constructed
in a manner similar to the energy efficiency parameter using a linearly weighted geometric mean.

3.2.3 Comparison to Emission Forecasts

We generated an ensemble of baseline scenarios containing 25 members by taking the cross product of five
energy efficiency and five labor productivity parameters. Figures 3–5 compare the emissions generated by our
model instance for each element of the baseline ensemble to historical data (Boden et al., 2009), 2005–2009
EIA reference case forecasts (United States Energy Information Agency), and 40 SRES scenarios from the
IPCC AR4 (Nakicenovic et al., 2000). Only the 2005 EIA growth rate forecasts are shown in the left-hand
plots to avoid clutter. The difference between our global emissions trajectories and the baseline forecasts
produced by the EIA are due almost entirely to the divergence between our forecasts for China beyond 2011.
Since our parameters are rooted in extrapolation from the historical record, it is not surprising that our
trajectories miss the dramatic slowing in emissions for China forecast by the EIA. Our trends do show a
similar decline in the rate of China’s year-over-year emissions growth after 2011, but without the kink in
both the 2005 and 2009 EIA forecasts. In particular, China’s emissions growth rate drops from 6% in 2010
to less than 4% in 2011 in these EIA forecasts.

4 Carbon Leakage Study

In this policy study, we want to understand the impacts of a carbon tax on international trade, the extent
to which carbon leakage limits global reductions in emissions, and the impact of border tax adjustments on
reducing carbon leakage. The issue of carbon leakage has generated a significant literature, and a variety of
approaches to estimation have produced a wide range of leakage estimates. Babiker (2005), for example, uses
the EPPA model to predict leakage in excess of 100% in one scenario based on an assumption of increasing
returns to scale. There exist far fewer estimates of the effects of border tax adjustments. Babiker and
Rutherford (2005), for example, model the Kyoto Protocol and find substantial leakage and small effects
from border tax adjustments.

We consider four policy scenarios in this study:

1. A business-as-usual scenario with no climate policy using the median baseline scenario described in
Section 3.2 (BAU).

2. A policy scenario using the median baseline scenario in which each Annex B country taxes carbon at
$105/tC (AB).

3. A policy scenario using the median baseline scenario in which each Annex B country taxes carbon
and imposes a border tax adjustment on the estimated unpaid carbon content of imports from all
non-Annex B countries at $105/tC (BTA).

4. A policy scenario using the median baseline scenario in which each Annex B country taxes carbon,
assesses a border tax adjustment on the estimated total carbon content of all imports, and subsidizes
all exports based on the total carbon content at $105/tC (BTAS).

We then report on the dependence of the emissions forecasts to the underlying baseline scenario assumptions.
More policy scenarios can be found in Elliott et al. (2010).

Since carbon emissions are free in most of the world, data is typically unavailable for industry expenditures
on carbon emissions in the base year, and we must instead compute the taxable carbon emissions. We measure
the embedded emissions in each product by assuming conservation of emissions. In particular, the emissions
content of the output is the sum of the emissions content of the constituent inputs and emissions generated
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Figure 3: Global CO2 emissions: comparison of historical data (blue), 2005–2009 EIA forecasts (red),
SRES scenarios (light grey), and our ensemble of baseline scenarios (black) plotted as year-over-year growth
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Figure 4: USA CO2 emissions: comparison of historical data (blue), 2005–2009 EIA forecasts (red), and
our ensemble of baseline scenarios (black and grey) plotted as year-over-year growth rates (left) and as gross
annual emissions (right).
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our ensemble of baseline scenarios (black and grey) plotted as year-over-year growth rates (left) and as gross
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during the production process from burning coal, natural gas, and oil. Specifically, the conservation of
emissions is stated as

Ej,tȳjyj,t =
∑
i

(Ei,t + eji )x̄
j
ix

j
i,t ,

where Ej,t is the total emissions content per unit of commodity j in time t, eji is the emissions generated

per unit from input commodity i during the production process (the emissions factor), x̄ji is the base-year

volume of commodity i used in the production of commodity j, xj
i,t is the change in demand relative to the

base year for those inputs at time t, ȳj is the base-year volume of commodity j produced by the industry,
and yj,t is the change in output relative to the base year at time t.

The emission factors for new releases at the point of generation allow us to account for regional and
industrial differentiation in different types of inputs and their emission rates. For example, the steel industry
uses a large amount of coking coal with a high carbon content, while the electricity generated by coal-fired
power plants typically comes from lignite with a low carbon content. Further, some industries, such as the
chemicals and plastics industries, use inputs such as natural gas in the generation of their products but do
not burn those fuels and hence have no new emissions generated from them. The computation of the total
emissions content does, however, account for the emissions embedded in the natural gas they consume.

The new emissions generated by the producers from each input in the base year, f̄ ji = eji x̄
j
i , is obtained

from the energy volume information in the GTAP-E data set (Burniaux and Truong, 2002). The embedded
emissions expression Eix̄

j
i is written in terms of generally unavailable base-year volume quantities. Therefore,

we compute the total emissions budget for the industry measured in terms of the base-year quantities rather
than compute the emissions content per commodity unit. In particular, we make the substitution

Fj,t = Ej,tȳj

to obtain the equivalent system

Fj,tyj,t =
∑
i

(
Fi,t

x̄ji
ȳi

+ f̄ ji

)
xj
i,t .

In those cases where we know the base-year volume data, we directly compute the ratio of x̄jrir to ȳir . In all
other cases, we compute the ratio from available expenditure data,

x̄ji
ȳi

=
p̄ix̄

j
i

p̄iȳi
=
ēji
r̄i

≡ Φj
i ,

where the expenditure and revenue data for each industry, ēji and r̄i, respectively, are known from the base-
year calibration data. If the volume and expenditure data are consistent, then the ratios computed from
either method will be identical. We then obtain the system of equations

Fj,tyj,t =
∑
i

(
Fi,tΦ

j
i + f̄ ji

)
xj
i,t . (1)

We estimate the emissions content F for each industry by solving the system of equations (1) for given Φ,
f̄ , x, and y. These amounts are then used to determine the carbon taxes on imports and subsidies on exports
for the border tax adjustments. However, this system has more variables than equations because of the land,
labor, and capital factors. In our model, we ignore the contribution of these factors to the emissions by
fixing their amounts to zero. We are then left with a square system of equations that can be solved. For all
of our scenarios, we solve the CGE model instance for the given year using the current emissions estimate,
compute the emissions for the next year using the output, and increment the time. That is, we use the
emissions estimate from the previous year to determine the border tax adjustments. For the scenario where
we compute only unpaid emissions content, we simply set f̄ ji = 0 for the producers in the Annex B countries.
We use the full emissions data when computing the total emissions for the other scenarios.

To present the results, we define a carbon flow matrix that shows the emissions in each region. We
fix total produced emissions by calculating the fossil fuel consumption in each region, estimate the export
emissions flows, and assign the remaining emissions to local consumption. We aggregate from 16 regions to
8 regions in the carbon flow tables for readability. Annex B regions are largely left disaggregated; JAP and
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Table 3: Fossil fuel CO2 accounting in 2004 for the BAU scenario in millions of tonnes, showing carbon producers
(or exporters) on the vertical and carbon consumers (or importers) on the horizontal. The diagonal gives domestic
consumption.

BAU Annex B Non Annex B
2004 USA EU RUS JAZ CAN CHK LAM ROW Prod.
USA 5012.3 279.8 7.4 94.8 177.4 109.1 209.1 112.3 6002.2
EU 303.1 3928.1 62.7 72.3 28.3 96.3 65.9 306.5 4863.2
RUS 70.7 408.3 1468.3 22.4 3.3 82.6 22.0 100.3 2177.8
JAZ 83.7 81.6 3.1 1146.5 7.6 160.2 12.5 97.7 1593.0
CAN 247.7 32.7 0.8 8.6 223.0 11.5 8.4 10.0 542.8

CHK 576.7 586.6 32.0 390.5 49.9 3679.3 103.3 478.4 5896.8
LAM 293.1 121.8 5.5 18.4 15.9 36.2 955.8 40.2 1487.0
ROW 300.2 657.2 30.6 289.3 20.5 375.8 55.3 3199.1 4928.0

Cons. 6887.5 6096.2 1610.4 2042.9 526.0 4550.9 1432.3 4344.5 27490.7

AUS are aggregated to JAZ, and WEU and REU are aggregated to EU. For non-Annex B regions, we leave
the CHK region intact, aggregate all of Latin America, and aggregate all other regions – Africa and Central,
South and South East Asia – as ROW.

The carbon flow matrix for the BAU scenario in the 2004 base year is shown in Table 3. The diagonal
value indicates the emissions generated from domestic production and consumption. The off-diagonal entries
indicate the emissions embedded in imports and exports. The difference between the row sum and the column
sum determines whether the region is a net importer or exporter of emissions. In particular, USA is a net
importer of emissions while CHK is a net exporter. The lower-right corner indicates global emissions. For
the 2004 base year, global emissions are in good agreement with the emissions database produced by GTAP
Lee (2009) from the IEA energy database and with the CDIAC National Fossil-Fuel CO2 Emissions database
Boden et al. (2009).

Table 4 shows the carbon flow matrix for the AB scenario with a carbon price of 105$/tC (AB-105)
relative to the BAU scenario. The upper-left block of the matrix shows decreased trade among the Annex
B regions, while the lower-right block shows increased trade among the non-Annex B regions. Increases in
imports of carbon from the non-Annex B regions due to carbon leakage are shown in the lower-left block. In
particular, the carbon consumption for each Annex B region (direct and virtual) falls much more slowly than
their carbon production because of leakage. Depending on how the goal for an emissions target is defined,
this fact can change the necessary carbon price by as much as 15–20%.

Table 4: Percent change in emissions in 2020 for the AB scenario, a scenario with a constant 105$/tC (USD per
tonne carbon) tax levied in all Annex B countries starting in 2012, relative to the BAU scenario. The largest gross
changes (|∆E| ≥ 50 MtCO2) are shown bolded, and the smallest (|∆E| ≤ 10 MtCO2) are shown faded.

AB-105 Annex B Non Annex B
vs. BAU USA EU RUS JAZ CAN CHK LAM ROW Prod.
USA -27.2 -20.0 -22.5 -27.0 -21.7 -25.4 -30.0 -29.6 -26.8
EU -23.6 -23.3 -19.6 -18.3 -17.7 -21.6 -23.4 -28.2 -23.5
RUS -38.0 -33.9 -29.4 -34.6 -34.0 -37.6 -40.0 -35.6 -31.5
JAZ -14.2 -14.4 -17.2 -32.9 -18.8 -22.3 -19.3 -25.0 -28.8
CAN -20.8 -18.6 -16.2 -19.0 -26.1 -19.8 -20.1 -20.7 -22.8

CHK 1.1 1.8 2.0 3.0 2.0 2.8 2.3 1.3 2.4
LAM 24.7 14.0 47.7 4.3 25.9 3.0 6.6 5.4 10.7
ROW 8.0 12.8 18.5 15.2 8.4 6.2 9.6 4.7 6.6

Cons. -19.4 -15.1 -26.7 -15.6 -17.0 0.3 -1.0 -0.1 -9.9

The addition of an import tax on carbon content in the BTA scenario has a small, but not insubstantial
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Table 5: Percent change in emissions in 2020 for the BTA scenario, a scenario with a constant 105$/tC (USD per
tonne carbon) tax levied in all Annex B countries and on the unpaid emissions embedded in imports from non-Annex
B countries starting in 2012, relative to the BAU scenario.

BTA-105 Annex B Non Annex B
vs. BAU USA EU RUS JAZ CAN CHK LAM ROW Prod.
USA -25.5 -18.1 -20.7 -16.4 -19.2 -35.8 -36.2 -37.7 -25.8
EU -12.4 -19.9 -17.6 -14.9 -14.3 -33.4 -31.5 -36.6 -21.0
RUS -27.8 -30.0 -27.8 -24.2 -30.9 -49.9 -51.6 -45.1 -30.3
JAZ -12.8 -15.0 -17.0 -25.8 -18.1 -35.5 -28.0 -35.8 -26.7
CAN -14.8 -18.6 -13.7 -16.7 -22.3 -32.1 -29.1 -30.7 -19.8

CHK -9.4 -10.5 -12.1 -11.1 -11.9 3.8 13.6 8.6 0.9
LAM -8.5 -4.0 10.6 -2.7 -4.6 3.6 5.7 7.3 2.7
ROW -5.2 -6.9 -9.2 -8.1 -6.2 8.0 16.6 4.6 2.8

Cons. -21.1 -17.3 -26.5 -18.8 -18.6 0.5 -0.8 0.2 -10.7

Table 6: Percent change in emissions in 2020 for the BTAS scenario, a scenario with a constant 105$/tC (USD per
tonne carbon) tax levied in all Annex B countries and on the total emissions embedded in all imports with subsidies
on all exports for the carbon taxes levied starting in 2012, relative to the BAU scenario.

BTAS-105 Annex B Non Annex B
vs. BAU USA EU RUS JAZ CAN CHK LAM ROW Prod.
USA -25.6 -19.0 -21.4 -18.7 -20.4 -23.9 -16.9 -22.0 -24.7
EU -13.7 -20.2 -17.5 -15.9 -15.6 -25.8 -21.8 -23.1 -20.1
RUS -31.8 -32.6 -30.3 -29.0 -33.5 -16.4 -18.9 -12.4 -28.7
JAZ -13.4 -15.9 -16.5 -26.3 -18.8 -25.8 -20.4 -27.7 -25.1
CAN -15.6 -19.1 -13.5 -18.2 -23.1 -24.7 -20.8 -22.1 -19.6

CHK -8.0 -8.9 -10.0 -9.9 -10.3 3.1 9.4 5.6 0.3
LAM -9.9 -2.7 15.5 -1.3 -2.8 -1.0 4.0 0.6 0.5
ROW -4.1 -5.8 -6.4 -7.1 -4.5 1.8 7.9 3.2 1.2

Cons. -20.8 -17.4 -28.5 -18.4 -18.6 0.5 0.2 0.5 -10.8
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effect on global emissions. Where the emissions are generated changes substantially from the AB scenario,
as shown in Table 5. In particular, there is increased trade between the Annex B countries, causing them
to increase their emissions generated. There is also some increased trade between non-Annex B countries.
However, the off-diagonal blocks show decreased trade between Annex B and non-Annex B countries. The
net result is a small reduction in global emissions.

The results when adding export subsidies on the carbon taxes paid are shown in Table 6. These subsidies
reduce the amount of trade between non-Annex B countries and hence their emissions, but the Annex B
countries increase production for exports to non-Annex B countries. The result is a small further reduction
in global emissions, but the producers in Annex B countries are better off.

We now determine how strongly the gross emissions forecasts from our model instance depend on the
assumptions of the underlying baseline scenario. Even if the emissions output relative to the baseline scenario
is the same for two different scenarios, the gross emissions relevant for policy evaluation are rarely the same.
The stated USA emissions target under the nonbinding international agreement from the December 2009
Copenhagen meeting, for example, was a 17% reduction from 2005 emissions levels by 2020. CGE models
can say little about achieving these absolute policy targets without an explicit treatment of the range of
baseline scenarios that underlie any forecast.

To complete this analysis, we ran our model instance using the parameters in each of the 25 baseline
scenarios outlined in Section 3.2. Figure 6 compares the AB-105 policy scenario on the reduction in USA
emissions, the reduction in total emissions from Annex B countries, and the total increase in emissions from
non-Annex B countries in 2020 across the range of baseline scenarios. Each connected line is a subsample
with a fixed value of the labor productivity parameter and varying energy efficiency parameter. The figure
presents the reduction in the percent change in emissions relative to the baselines and the gross emissions.

The relative impact of the policy on total emissions in the Annex B countries appears to be fairly
robust against varying assumptions on the labor productivity growth rate when measured in gross terms and
less robust to varying assumptions in the energy efficiency growth rate. The USA is a notable exception;
emissions reductions in this region are more sensitive to the assumptions on labor productivity than on
energy efficiency, with the same overall trend regarding marginally more emissions reductions in baseline
scenarios with higher emissions. Measured in percent terms, the ensemble of baseline scenarios studied gives
a sensitivity range for gross emissions of about 1%. We note that our study is over a very compact ensemble
relative to the range implied by the distribution of EIA forecasts over the past five years shown in Figure 4.

Increased emissions in the non-Annex B regions appears to be more robust to variations in the baseline
scenario. Unsurprisingly, baseline scenarios with higher emissions lead to more carbon leakage since Annex
B regions are forced to pay more carbon taxes for production. This increase cancels out roughly 25% of
the additional gross reductions from the Annex-B countries’ baseline scenario with the highest emissions. In
percent terms, the carbon leakage is robust to changes in labor productivity but much less robust to changes
in energy efficiency.
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Elliott, J., I. Foster, S. Kortum, T. Munson, F. Pérez Cervantes, and D. Weisbach (2010): “Trade and
Carbon Taxes,” American Economic Review: Papers and Proceedings, 100, 465–469.

Ferris, M. C. and T. Munson (1999): “Interfaces to PATH 3.0: Design, implementation and usage,” Com-
putational Optimization and Applications, 12, 207–227.

Ferris, M. C. and T. Munson (2000): GAMS/PATH User Guide: Version 4.3, Department of Computer
Sciences, University of Wisconsin, Madison.

Fourer, R., D. M. Gay, and B. W. Kernighan (2003): AMPL: A Modeling Language for Mathematical
Programming, Pacific Grove, California: Brooks/Cole–Thomson Learning, second edition.

Friedlingstein, P., P. Cox, R. Betts, L. Bopp, W. von Bloh, V. Brovkin, P. Cadule, S. Doney, M. Eby, I. Fung,
G. Bala, J. John, C. Jones, F. Joos, T. Kato, M. Kawamiya, W. Knorr, K. Lindsay, H. D. Matthews,
T. Raddatz, P. Rayner, C. Reick, E. Roeckner, K. G. Schnitzler, R. Schnur, K. Strassmann, A. J. Weaver,
C. Yoshikawa, and N. Zeng (2006): “Climate-carbon cycle feedback analysis: Results from the C4MIP
model intercomparison,” Journal of Climate, 19, 3337–3353.

Fullerton, D., ed. (2009): Distributional Effects of Environmental and Energy Policy, Surrey, U.K.: Ashgate
Publishing.

Fullerton, D. and D. L. Rogers (1993): Who Bears the Lifetime Tax Burden?, Washington, D.C.: Brookings
Institution Press.

Ginsburgh, V. and M. Keyzer (1997): The Structure of Applied General Equilibrium Models, Cambridge:
The MIT Press.

15



Gopalakrishnan, B. N. and T. L. Walmsley, eds. (2008): Global Trade, Assistance, and Production: The
GTAP 7 Data Base, Purdue University: Global Trade Analysis Center, Department of Agricultural Eco-
nomics.

International Labor Organization (2009a): Key Indicators of the Labour Market, International Labour Or-
ganization Economic and Labour Market Analysis Department, see http://www.ilo.org/empelm/.

International Labor Organization (2010b): Yearbook of Labour Statistics Database, International Labor Or-
ganization Department of Statistics, see http://laborsta.ilo.org.

Johansen, L. (1960): A Multisectoral Study of Economic Growth, North Holland.

Lee, H.-L. (2009): An Emissions Data Base for Integrated Assessment of Climate Change Policy Using
GTAP, see https://www.gtap.agecon.purdue.edu/resources/download/4470.pdf.

Lee, N. (2006): “Bridging the gap between theory and practice in integrated assessment,” Environmental
Impact Assessment Review, 26, 57–78.

Liu, J., C. Arndt, and T. Hertel (2004): “Parameter estimation and measures of fit in a global, general
equilibrium model,” Journal of Economic Integration, 19, 626–649.

Nakicenovic, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grübler, T. Jung, and
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